
Connector Hub Implementation
Handbook
Version 4.5

Table of Contents
Pre-Setup: Connector Hub Project Plan

Uplevel Architecture:
Connector Hub Setup Requirements
Data Source Connection Requirements
Other Requirements:
Org Chart:

Setting Up the VM & Connector Hub
Prerequisites
Shell Script: Install Connector Hub
Logging in to the Connector Hub

Using Uplevel Okta
Using OKTA as OIDC Identity Provider
Using Azure AD as OIDC Identity Provider

Connecting Individual Data Sources

Messaging
Setting Up the Slack Standard/Business+ Connector
Setting Up Slack Enterprise Grid Connector
Setting Up Microsoft Teams Connector

Calendar
Setting Up Google Calendar Connector
Setting up Google Calendar Connector - OAuth
Setting Up O365 Connector

Work Management Tools
Setting Up Jira Cloud Connector
Note: you will need an understanding of the Jira projects you’d like to include in the Uplevel
analysis.
Setting Up Jira OnPrem Connector

Source Code
Setting Up Github Cloud/OnPrem Connector using PAT
Setting Up Github Cloud/OnPrem Connector using Github Apps
Setting Up Gitlab Cloud/OnPrem Connector
Setting Up Gerrit Connector
Setting Up Bitbucket Cloud Connector

Setting Up Bitbucket OnPrem Connector

Final Step: Push Data to Uplevel

Appendix: Credential Encryption

Pre-Setup: Connector Hub Project Plan
Below is an overview of the steps needed to complete the data connection process with
Uplevel. We’ve outlined approximate timing for each step and who needs to be involved.
Below the timeline, you’ll find all the requirements and instructions, including the credentials
and user privileges, needed for each data source.

Task Owner Time

Kick off meeting with IT IT team + Uplevel 60 min meeting

Set up VM IT team Approx 1 hour of work

Install Uplevel Connector Hub IT team + Uplevel 60 min

Connect data sources Data Source Admins* 1 hour per data source

Upload org chart IT team 15 mins

Push data to Uplevel IT team 2 mins

* credential requirements differ per data source - please see below for the full list of
instructions

Uplevel Architecture:

Connector Hub Setup Requirements
Either an AWS Linux t2.xlarge instance or VM with the following specifications:

● Recommended server hardware spec and network access:
○ OS: Linux
○ CPU: 4 cores
○ RAM: 16GB
○ DISK: 100GB
○ Ingress (inbound traffic): Only TCP Port 22 for SSH
○ Egress (outbound traffic): Any 0.0.0.0/0 IP

● Ensure Docker engine and compose are installed.

Data Source Connection Requirements
Messaging:

● Slack Standard and Business+: Workspace Owner
● Slack Enterprise Grid: Workspace Owner
● Microsoft Teams: Administrator

Calendar:

https://docs.docker.com/compose/install/

● Gmail: Administrator
● O365: Administrator
● Microsoft Exchange: Administrator
● .csv file with email addresses for org

Project Management:
● Jira Cloud: Administrator
● Jira OnPrem: Administrator
● Understanding of which Jira projects to track

Git:
● Github Cloud: Administrator
● Github OnPrem: Administrator
● GitLab Cloud: Administrator
● GitLab OnPrem: Administrator
● BitBucket Cloud: Administrator
● BitBucket OnPrem: Administrator
● Gerrit: Administrator
● Understanding of which repos to track

Other Requirements:

Org Chart:

● Format: .csv file in the following format:
email
first_name
last_name
job_title
department
manager_email
office_location - optional
reporting_group - optional

Setting Up the VM & Connector Hub
As an IT administrator, you can install the Connector Hub manually via shell script on a
dedicated VM.

Prerequisites
Your Uplevel contact will provide you with the following. You’ll need these during setup.

1.) Client ID (typically this is your company domain name)
2.) Vault Passcode (for encrypting credentials locally typically sent via pwpush.com)
3.) License file (a *.json file)

Shell Script: Install Connector Hub
1. Spin up a dedicated linux VM with SSH access. See recommended spec below. (Please
follow your organization's standard operating procedure.)

● Recommended server hardware spec and network access:
○ OS: Linux/Unix, CentOS 7+
○ CPU: 4 cores
○ RAM: 16GB
○ DISK: 100GB
○ Ingress (inbound traffic): Only TCP Port 22 for SSH
○ Egress (outbound traffic): Any 0.0.0.0/0 IP

(The above instance type is similar to an Amazon Linux t2.xlarge.)

SSH Session Security: For SSH to utilize a stronger encryption for server/client communication,
please consider updating the SSH server configuration in your VM, replacing Cipher Block
Chaining, CBC mode support with a more secure alternative (e.g. CTR or GCM). Here is some
reference documentation.

2. SSH with local port forwarding into the VM. (Note: If using Windows as your local
machine, please use PuTTy to port forward with SSH)

For Mac/Linux, find an example SSH command with port forwarding. To use the below
example, you will need to replace the ec2-user, internal-ip and external-ip as well as the
location to keypair.pem pem/rsa file with your own):

$
SSH command with localhost port forwarding
ssh -i keypair.pem -L 127.0.0.1:8080:internal-ip:8080 ec2-user@external-ip

https://www.ibm.com/support/pages/disabling-cipher-block-chaining-cbc-mode-ciphers-and-weak-mac-algorithms-ssh-ibm-puredata-system-operational-analytics
https://www.ibm.com/support/pages/disabling-cipher-block-chaining-cbc-mode-ciphers-and-weak-mac-algorithms-ssh-ibm-puredata-system-operational-analytics
https://www.putty.org/

3. Install Docker. The Connector Hub relies on docker engine/compose running in the VM.
Please make sure a docker engine and compose are installed.

$

$

Here is a helper script for a Centos 7 VM - copy and run both rows
sudo curl -fSO https://intelli-learn-uplevel.s3-us-west-2.amazonaws.com/connector/centos-docker-compose-setup.sh

sudo sh centos-docker-compose-setup.sh

4. Install the Uplevel Connector Hub. (Note: You will be prompted to enter your ClientID and
Vault Password during this step)

$
$
$

$

$

Test docker engine/compose installation - should print version number
sudo docker --version
sudo docker-compose --version
sudo docker info

Download the latest Connector Hub script - copy and run both rows
sudo curl -fSO https://intelli-learn-uplevel.s3-us-west-2.amazonaws.com/connector/start-uplevel-connector-hub.sh

Run the startup script as sudo
sudo sh start-uplevel-connector-hub.sh

5. After installation is completed, navigate to http://localhost:8080 from your local machine
while keeping the SSH session alive and upload the provided license file.

Logging in to the Connector Hub
Once the Connector Hub is set up, there are multiple options to access once you navigate to
http://localhost:8080. By default, you will be met with Uplevel’s Okta login screen, but you
have the option to use your own Okta instance or Azure AD. The steps for each option are
outlined below.

Using Uplevel Okta
Once the Connector Hub is set up, contact your Uplevel Representative to provide you login
credentials via Okta. You will be sent an activation email to set up your credentials. Once they

https://docs.docker.com/compose/install/
https://intelli-learn-uplevel.s3-us-west-2.amazonaws.com/connector/centos-docker-compose-setup.sh
https://intelli-learn-uplevel.s3-us-west-2.amazonaws.com/connector/start-uplevel-connector-hub.sh
http://localhost:8080
http://localhost:8080

are set up, you can use those credentials to log into the Connector Hub after navigating to
http://localhost:8080 .

Using OKTA as OIDC Identity Provider
To integrate with your Okta instance, follow the instructions below:
1. Configure an App in OKTA

● Login to OKTA Admin console
● Select Applications and click on Add Application .
● Select Web as the application platform type and click Next
● Name the application: (Uplevel Connector Hub)
● Base URL (optional): IP/DNS address of your onprem Uplevel Connector Hub
● Enter Login Redirect URL: https://uplevelteam.okta.com/oauth2/v1/authorize/callback
● Assign a Group.

○ Be sure to verify the users that need access are assigned to the selected group.
● Click “Done”

2. Share Client Credentials information with Uplevel (we will configure them into our identity
provider service - OKTA):

● OIDC Client ID
● OIDC Client Secret
● Your OKTA org domain or Discovery URL.

○ Example: https://{ theOktaIdPOrg }/.well-known/openid-configuration

Once your Uplevel Representative has confirmed we have completed the configuration on our
side, using the information you provided from step 2, you can continue with the next step.

3. Create an ‘okta.env’ text file (please note the ‘.env’ extension).
● Copy/paste the below template into the okta.env file and fill in the <variables> with

items from your OKTA application
● Upload the completed file into the user root directory of the VM hosting the Connector

Hub.

Copy/paste template:

OKTA_ORG_URL=<Okta domain>

OKTA_CLIENT_ID=<Client ID>

OKTA_CLIENT_SECRET=<Client secret>

OKTA_CALLBACK_URI=<Sign-in redirect URIs>

http://localhost:8080

Completed example:

OKTA_ORG_URL=https://dev-984437.oktapreview.com

OKTA_CLIENT_ID=0oan42hm*****

OKTA_CLIENT_SECRET=B3CK*****************

OKTA_CALLBACK_URI=http://localhost:8080/users/callback

4. Update the Connector Hub. Updating will pick up and use the uploaded okta.env file.
● SSH with Port forwarding into the VM hosting the connecting hub as usual.
● Run the below shell command (Note: You will be prompted to enter your ClientID and

Vault Encryption Passcode)

$ sudo sh upgrade.sh

5. Open browser and access Connector Hub. It should redirect you to your OKTA login page if
not already signed in via SSO (please try using an incognito window if you are experiencing
any redirecting and/or login issues).

● If you are accessing via http://localhost:8080, you will still need to SSH with port
forwarding as usual.

● If you are using an internally accessible URL, you do not need to SSH with port
forwarding (provided you’ve allowed HTTP traffic to the VM).

Using Azure AD as OIDC Identity Provider
You can use Azure AD to manage authentication and authorization for the Uplevel Connector
Hub by registering an application in your Azure portal.

1. Register an enterprise app in azure portal
● Go to: https://portal.azure.com then click App Registrations

○ Enter Name: Uplevel Connector Hub
○ Enter Redirect URI (Web):

■ https://uplevelteam.okta.com/oauth2/v1/authorize/callback
○ Check (x) Single-tenant as the supported account type
○ Click [Register] button

https://portal.azure.com

2. In the Overview menu:
● Copy Application Client ID and send it to your Uplevel Representative
● Click [Endpoints] button
● Copy the OpenID Connect metadata document URL and provide to your Uplevel

Representative

3. In the certificates & secrets menu:
● Click [New client secret] button
● Enter Description: Uplevel
● Check (x) Never
● Click on [Add] button
● Copy Client Secret value and provide to your Uplevel Representative

4. Assign Group/Users to the registered application
● Be sure to verify the users that need access to the Uplevel Connector Hub are assigned

to the required group

5. Share Client Credentials information with Uplevel (We will configure them into our
identity provider service - OKTA):

● Application Client ID
● Application Client Secret
● Application OpenID Connect metadata document URL

Reference Links:
● Okta/Azure Federation
● Microsoft Quickstart Guide

https://developer.okta.com/docs/guides/add-an-external-idp/azure/create-an-app-at-idp/
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

Connecting Individual Data Sources
Once you’ve logged into the Connector Hub, the next step is to connect the individual data
sources that your company uses. As a best practice, Uplevel recommends that service accounts
are set up for each integration.

Messaging
We recommend setting up a service account to connect your Messaging tool. The data points
that will be passed to Uplevel for processing are:

● Channel & DMs (meta only): Time, sender, length, emojis, wordcount, @mentions

Setting Up the Slack Standard/Business+ Connector
0. All Slack Business+ plans have a “Standard Export'' ability by default. To export private
channel and DM data, fill out the Slack application. For more details on Slack exports, take a
look at Slack’s help documentation.

https://slack.com/help/articles/204897248-Guide-to-Slack-import-and-export-tools#options-by-plan

1. Create an “Uplevel” Slack Workspace Owner account. This account can be named anything,
but we recommend something close to “Uplevel Service Account”. Make sure 2FA and SSO are
both disabled.

● A Workspace Owner account can get around an SSO requirement by navigating to this
link: https://<workspace>.slack.com/?no_sso=1 and selecting Forgot Password.

● Follow the link in the email to establish a password and use that password to connect.

● Confirm the service account authentication type by going to your slack admin page:
https://<workspace>.slack.com/admin and make sure it is a Workspace Owner account
with SSO and 2FA turned off.

2. Sign in to Slack with the Uplevel service account and go to your export page
(https://<workspace>.slack.com/services/export). You will perform 2 exports here.

● Set up a one year export. Under Export date range, select the Specific date range
option (see image below). Select one year’s worth of data and click Start Export.

(Image shows Slack Business+. Please note that Slack standard will look slightly different)

● Schedule a daily recurring export by setting the frequency to “Daily” then clicking
“Save” [Continued on next page]

(Image shows Slack Business+. Please note that Slack standard will look slightly different)

3. Navigate back to the connector hub and enter the credentials for the Workspace Owner
service account to connect.

Setting Up Slack Enterprise Grid Connector
0. Please make sure you have Discovery APIs enabled for your Slack Enterprise Grid Plan. To
enable, submit a request through your Slack Account Representative.

1. Click on the Connect button for the Slack Enterprise Grid Connector. This will kick off the
Oauth flow, requesting the `discovery.read` scope permission.

https://slack.com/help/articles/360002079527-A-guide-to-Slacks-Discovery-APIs

2. On the upper right corner, select your Enterprise Grid workspace (Important: the workspace
must be reselected regardless if it is already selected) Sign in if prompted with your Slack
Workspace Owner credentials.

3. Click on the Allow button to grant your permission. This will redirect you back to the Uplevel
Connector Hub.

4. Click on the Continue.
● Note, an xoxp-* token is automatically populated/redacted in the password field.

Please do not share this token. This token will be encrypted and stored locally.

5. Upload a csv file containing the list of email addresses of participants. This list should be
formatted as one email address per line, without any quotes.

● Below is an example content of a valid emails.csv file:
dave@uplevelteam.com

ejiro@uplevelteam.com

stef@uplevelteam.com

ravs@uplevelteam.com

6. Click on Continue, then click on the Create An Archive button

7. Close browser, and exit SSH shell

Setting Up Microsoft Teams Connector

To connect the Microsoft Teams Connector, a Admin in Microsoft Azure will need to:
● Register an Enterprise application.
● Create a service account with a user role.
● Request access to protected API by completing this form. (Please refer to the Request

Access to Protected API Section below)

As an Admin, please follow the below steps to register an azure app for the Microsoft Teams
Connector. This will ensure that a service account with a user role can be used to authorize
read-only access to participants' calendar events

1. Create a text file named azure.env, copy the below variables and paste into the file. This file
will be uploaded into the Office 365 Connector.

MSAL_CLIENT_ID=
MSAL_TENANT_ID=
MSAL_CLIENT_SECRET=

2. Navigate to: https://portal.azure.com and select Azure AD > App Registrations
● Enter Name: Uplevel Teams Connector
● Enter Redirect URI (Web):

http://localhost:8080/service/microsoft/teams/connector/callback
● Check (x) Multi-tenant as a supported account type
● Click [Register] button

https://aka.ms/teamsgraph/requestaccess
https://portal.azure.com

3. In the overview menu:
● Copy Application (client) ID and paste into azure.env file as MSAL_CLIENT_ID=value
● Copy Directory (tenant) ID and paste into azure.env file as MSAL_TENANT_ID=value

4. Authentication menu:
● Check [x] Access tokens
● Confirm that Multitenant is checked
● Click [Save] button

5. Certificates & secrets menu:
● Click [New client secret] button

● Enter Description: Uplevel
● Check (x) Never
● Click on [Add] button
● Copy Client secret value and paste into azure.env file as:

MSAL_CLIENT_SECRET=value

6a. In the API permissions menu:
● Click on [Add a permission] and then select Microsoft Graph
● Select the Application permissions and search for Calendars
● Search for and select all these 8 read-only permissions:

○ [x] User.Read.All #Allows connecting and reading other users profile

○ [x] GroupMember.Read.All #Allows the app to list groups, read basic group properties and

read membership of all your groups.

○ [x] Team.ReadBasic.All #Read the names and descriptions of teams, on your behalf.

○ [x] Channel.ReadBasic.All #Read channel names and channel descriptions, on your behalf.

○ [x] TeamMember.Read.All #Read the members of teams, on your behalf.

○ [x] ChannelMember.Read.All #Read the members of channels, on your behalf.

○ [x] ChannelMessage.Read.All #allows reading channel messages.

○ [x] Chat.Read.All #Allows an app to read your 1 on 1 or group chat messages in Microsoft

Teams, on your behalf.

● Click on [Add permissions] button

6b. In the API Permissions menu:
● Click on [Grant admin consent for {Company Name}] button

○ Please ensure that all 8 read-only permissions have been Granted by the Admin
for your organization (they should all have green check marks).

Optional
7. In the Branding menu:

- Download this icon and Upload as new logo

8. Navigate to: https://admin.microsoft.com/ Users -> Active users
● Click on Add a user
● Setup basic user information with User (no admin center access) role

https://admin.microsoft.com/

9. Microsoft requires that additional validation is needed to access some protected Teams API.
To request access to these API, this form must be completed:

Below are details to assist in completing the form:

● #1) Enter an Admin email eg: Ejiro@uplevelteam.onmicrosoft.com
● #2) Yes
● #3) Publish name: Uplevel Inc

https://aka.ms/teamsgraph/requestaccess

● #4) App name: Uplevel Teams Connector
● #5) App id(s): Provide Client ID from above (see Application (client) ID from azure)
● #6) Enter the following: The Uplevel App is the engineering effectiveness platform that

leverages machine learning & organizational science to champion behavior change. It
empowers engineers to do their best work.

● #7) Enter the following: The Uplevel App needs read access to all messages because it
analyzes the sentiment of the message, the length of the messages, the time the
messages were sent, and the participant that sent the messages.

● #8) Data retention: Select [*] It is obvious to any admin installing this app that it will
make a cop of Microsoft Teams messages

● #9) Tenant ID: Provide the Tenant ID from above (see Directory (tenant) ID from azure)
● #10) Does your organization own all those tenants? Select [*] Yes
● #11) Homepage URL: https://uplevelteam.com
● #12) Terms of service URL: https://uplevelteam.com/privacy-policy/
● #13) Privacy statement URL: https://uplevelteam.com/privacy-policy/

10. Navigate back to the connector hub and enter the credentials for the service account to
connect.

● Upload a csv file containing the list of email addresses of participants. This list should
be formatted as one email address per line, without any quotes.

● Below is an example content of a valid emails.csv file:
dave@uplevelteam.com

ejiro@uplevelteam.com

stef@uplevelteam.com

ravs@uplevelteam.com

11. Click on Continue, then click on the Create An Archive button.

12. Close browser, and exit SSH shell.

Calendar
To set up the calendar connector, we recommend setting up a service account. The calendar
data points that will be passed to Uplevel for processing are:

● Only calendars from selected users
● Meeting time, acceptance, invitees, organizational level, recurrence, titles (optional)
● We always exclude: Attachments, body, private events

Setting Up Google Calendar Connector
1. Set up a calendar admin service account for Uplevel.

2. Navigate to the Google Calendar connector tile and click “Connect”.

3. Click “Login with Google” and enter the service account credentials.

4. Allow calendar access and you’ll be directed back to the Connector Hub. [Continued on next
page]

4. Upload a csv file containing the list of email addresses of participants. This list should be
formatted as one email address per line, without any quotes.

● Below is an example content of a valid emails.csv file:
dave@uplevelteam.com

ejiro@uplevelteam.com

stef@uplevelteam.com

ravs@uplevelteam.com

5. Click on Continue, then click on the Create An Archive button.

6. Close browser, and exit SSH shell. [Continued on next page]

Setting up Google Calendar Connector - OAuth
To connect the Google Calendar Connector, an admin account will need to:

● Create an OAuth2 Credentials in Google Cloud Platform (GCP).
● Download the OAuth2 JSON credential file

Create an OAuth2 Credentials in GCP
1. Go to Google Cloud Platform Console and create a new project:

- https://console.cloud.google.com

2. Click on Enable APIs & services from the left menu of the project
- Click + Enable APIs and Services button
- Search for “calendar” and select the Google Calendar API
- Click Enable

https://console.cloud.google.com/

2. Register an app by clicking on the OAuth consent screen from the menu
- In the User Type, select Internal and click Create

- Enter require fields for App name, User support email and Contact email addresses
- Click Save and Continue button

- Click Add or Remove Scope button
- Search for calendar.readonly
- Select the shown URL

- Select the checkbox for Google Calendar API
- Click Update

- Click Save and Continue
- Confirm Scopes is properly configured for calendar.readonly the summary section

3. Click on the Credential from the menu
- Click + Create Credentials >> OAuth client ID
- Select the Web application application type from the dropdown
- Enter name: Uplevel Connector Hub
- Enter Redirect URL: http://localhost:8080/service/google/calendar/callback
- Click Save and Download JSON

4. Click “Connect” on the Google calendar connector and upload the downloaded JSON file into
the Google Connector

- Follow the OAuth authentication flow

Setting Up O365 Connector
To connect the Office 365 Calendar Connector, it requires a Microsoft Azure Admin to register
an Enterprise application and create a service account with a “User” role. As an Admin, please
follow the below steps to register an azure app for the 0365 Connector, this would ensure that
a service account with a user role can be used to authorize access to participants calendar
events. Note: for information on limiting the scope of the application, see the documentation
here.

1. Create a text file named azure.env, copy the below variables and paste into the file. This file
will be uploaded into the Office 365 Connector.

MSAL_CLIENT_ID=
MSAL_TENANT_ID=

https://docs.microsoft.com/en-us/graph/auth-limit-mailbox-access
https://docs.microsoft.com/en-us/graph/auth-limit-mailbox-access

MSAL_CLIENT_SECRET=

2. Navigate to: https://portal.azure.com Azure AD -> App Registrations
● Enter Name: Uplevel Connector
● Enter Redirect URI (Web):

○ http://localhost:8080/service/microsoft/calendar/callback
● Check (x) Multi-tenant as a supported account type
● Click [Register] button

3. In the Overview menu:
● Copy Application (client) ID and paste into azure.env file as MSAL_CLIENT_ID=value
● Copy Directory (tenant) ID and paste into azure.env file as MSAL_TENANT_ID=value

https://portal.azure.com

4. In the Authentication menu:
● Check [x] Access tokens
● Confirm that Multitenant is checked
● Click [Save] button

[Continued on next page]

5. In the Certificates & secrets menu:
● Click [New client secret] button
● Enter Description: Uplevel
● Check (x) Never
● Click on [Add] button
● Copy Client secret value and paste into azure.env file as: MSAL_CLIENT_SECRET=

value

5a. In the API permissions menu:
● Click on [Add a permission] and then select Microsoft Graph
● Select the Application permissions and search for Calendars
● Check [x] Calendars.Read
● Click on [Add permissions] button

5b. In the API Permissions menu:
● Click on [Grant admin consent for {Company Name}] button

5c. In the Delegated Permissions menu, select `offline access`

Optional
6. In the Branding menu:

● Download this icon and Upload as new logo

7. Go to: https://admin.microsoft.com/ and click Users -> Active users
● Click on Add a user
● Setup basic user information with user (no admin center access) role

https://admin.microsoft.com/

8. Once the service account has been set up, navigate to the Connector Hub and click
“Connect” on the Office 365 Connector.

● Click “Login with Microsoft Account” and upload the azure.env file.

9. Once the above steps are done, the final step is to upload a CSV file with all email addresses
in your engineering org. This tells the connector which calendars to pull data from. Once
uploaded, click “continue” then “create an archive” and the archive process will begin.

● Below is an example content of a valid emails.csv file:
dave@uplevelteam.com

ejiro@uplevelteam.com

stef@uplevelteam.com

ravs@uplevelteam.com

10. Click on Continue, then click on the Create An Archive button.

11. Close browser, and exit SSH shell.

Work Management Tools
This section outlines how to connect your Work Management tool to Uplevel. We recommend
setting up a service account. The Work Management data points that will be passed to Uplevel
for processing are:

● Issues & changelog within all specified Projects including all users contributing to those
projects, with the option to redact the description.

○ We can include / exclude by project as needed.

Setting Up Jira Cloud Connector
Click “Connect” on the Jira Cloud Connector. Follow the instructions listed in the Connector
Hub.

Note: you will need an understanding of the Jira projects you’d like to include in the Uplevel

analysis.

1. Create a service account.
● Login to Jira Admin portal https://admin.atlassian.com.
● Click on Manage users and create a Service Account.
● Role should be a Basic user role.
● Access required: “Has access on site and Jira Software” should be checked.

2. Create an token
● Login using Service Account credentials to https://id.atlassian.com/manage/api-tokens
● Click Create API token.
● From the dialog that appears, enter “Uplevel Connector: as a Label and click Create.
● Click Copy to clipboard.

○ Note, you will not be able to view this token again.
3. Connect

● Paste the copied Token into the API Token field in the connector hub.
● Paste your Jira Base URL below the API token.

4. Select the Jira Projects that should be included in the analysis.

5. Click Create an archive.

Setting Up Jira OnPrem Connector
Click “Connect” on the Jira Onprem Connector. Follow the instructions listed in the Connector
Hub.

Note: you will need an understanding of the Jira projects you’d like to include in the Uplevel
analysis.

1. Create a service account.
● Login to Jira Admin portal https://admin.atlassian.com.
● Click on Manage users and create a Service Account.
● Role should be a Basic user role.
● Access required: “Has access on site and Jira Software” should be checked.

2. Enter the credentials for the service account within the connector hub to connect.

3. Select the Jira Projects that should be included in the analysis.

4. Create an archive.

Source Code
This section outlines how to connect your Source Code tool to Uplevel. We recommend setting
up a service account. The Source Code data points that will be passed to Uplevel for
processing are:

● Pull requests, commits, pull request comments related to default branches from
specified organizations by anyone who participated in them

● We always exclude: Full source code, data related to private branches

Setting Up Github Cloud/OnPrem Connector using PAT

1. Create a PAT.
● Navigate to github.com or your hosted/onprem Github Enterprise URLand login with a

service account that has “member” permissions with read only access.
○ Make sure this account has access to all repos that will be included in the

analysis.
● From your avatar in the top right, click on Settings.
● Click on Developer settings from the left navigation.
● Click on Personal access tokens from the left navigation.
● Click the Generate new token button.
● Enter Token description: Uplevel Connector
● Select [x]repo scopes.

○ Note, Uplevel will only make read-only request for repo metadata
● Click the Generate token button.
● Copy the revealed Token.

○ Note, you will not be able to view this token again

2. Paste the copied Token into the connector hub to connect

Setting Up Github Cloud/OnPrem Connector using Github
Apps
Create a Github App owned by an organization

Reference link:
https://docs.github.com/en/developers/apps/building-github-apps/creating-a-github-app

1. Navigate to your account settings > Your organization. Then, click on the Settings button to
the right of the organization.

2. Navigate to: Developer settings > Github Apps > [New Github App] button

3. Enter the following on the web form:
● Github App name: YourCompanyName+Uplevel Connector (eg Octo+Uplevel

Connector)

● Description: Uplevel is the engineering effectiveness platform that leverages
machine learning & organizational science to champion behavior change.

● Homepage URL: https://uplevelteam.com
● Deselect the [] Active checkbox for Webhook

● Choose these Repository and Organization Read-only permissions (6 total)
[Continued on next page]

https://docs.github.com/en/developers/apps/building-github-apps/creating-a-github-app
https://uplevelteam.com

○ Permissions
+ Contents [Access: Read-only]
+ Issues [Access: Read-only]
+ Metadata [Access: Read-only]
+ Pull requests [Access: Read-only]
+ Projects [Access: Read-only]
+ Members [Access: Read-only]

4. Select where the app can be installed

5. Click the [Create GitHub App] button. This will take you to the app settings page as shown
below.

6. Copy and take note of the App ID value - this will be entered into the connector hub.
7. Scroll down and click on the [Generate a private key] button to download a PEM file (please
take note, this will be uploaded into the connector hub).

8. On the same page In the left nav, click on the [Install App] menu >> Install
Reference link:
https://docs.github.com/en/developers/apps/managing-github-apps/installing-github-apps

● Install on All or Only selected repositories. (Repeat installation on other organizations
if necessary, you just need to allow the app to be installed on any organization).

https://docs.github.com/en/developers/apps/managing-github-apps/installing-github-apps

9. Once installation is complete, the page will redirect to a URL with an Installation ID at the
end. Please copy and take note of it, it will be entered into the connector hub.

● The URL should look similar to this:
//github.com/organizations/UpLevelTeam/settings/installations/22929903

Note:
If you made any scope permission changes after the app has been installed, you will need to
review and approve the pending request from within the list of GitHub Apps integrated into
your organization.

10. You should now have all 3 items that is required to connect with the Uplevel Github
connector.

● App ID
● Installation ID

● Private key PEM file

(Click the link Use Github App to authenticate at the bottom of the main Github cloud
connector to start):

Then enter the noted App ID, Installation ID, and upload the PEM file to continue

[Continued on next page]

http://localhost:8080/service/github/cloud/connector/oauth

Setting Up Gitlab Cloud/OnPrem Connector
1. Create a Access Token

● Navigate to gitlab.com or your hosted/onprem Gitlab Enterprise URL and login with a
service account that has “member” permissions with read only access

○ Make sure this account has access to all repos that will be included in the
analysis

● From your avatar in the top right, click on Settings
● On the User Settings menu, select Access Tokens
● Enter token Name: Uplevel Connector.
● Choose or enter an Expiry date (eg 2023/01/01)
● It’s best to use a few years ahead.

● Select [x]read_api and [x]read_repository scopes
○ Note, Uplevel will only make read-only request for repo metadata

● Click the Create personal access token button
● Copy and save the revealed Token

○ Note, you will not be able to view this token again

2. Paste the copied Token into the connector hub to connect.

Note: you will need an understanding of the repositories you’d like to include in the Uplevel
analysis.

Setting Up Gerrit Connector
● Navigate to your hosted/onprem Gerrit Enterprise URL eg http://localhost:7990/ and

login with a service account that has “member” permissions with read only access
○ Make sure this account has access to all repos that will be included in the

analysis
● From your avatar/username in the top right, click on Settings.
● On the Settings Page, select HTTP Credentials/Password.
● Take note of the Username
● Click the Generate Password button
● Copy and save the revealed password.

○ Note, you may not be able to view this password again
● Paste the noted Username into the form field below.
● Paste the copied Password and your hosted/onprem Gerrit Enterprise URL into the

fields in the connector hub to connect

Setting Up Bitbucket Cloud Connector
1. Create a Key

● Navigate to https://bitbucket.org and login with a service account that has “member”
permissions with read only access

○ Make sure this account has access to all repos that will be included in the
analysis

● From your avatar in the bottom left, click on your name from the workspace menu
● Click on Settings on your personal settings page
● Click OAuth consumers from the left navigation

● Click the Add consumer button.
○ Enter *Name: Uplevel Connector
○ Enter http://localhost:8080/service/bitbucket/cloud/connector/permission/ as the

Callback URL
● For Grant-Types and Permissions, select the following:

○ [x] This is a private consumer
○ [x] Account:Email and [x]Account:Read
○ [x] Workspace Membership:Read
○ [x] Projects:Read
○ [x] Repositories:Read
○ [x] Pull request:Read
○ [x] Issues:Read
○ [x] Snippets:Read

● Click the Save button.
● Click the name of the saved OAuth consumer (eg Uplevel Connector) to reveal the

Key/Secret

2. Connect
● Copy and Paste the Key/Secret into the form in the connector hub

Setting Up Bitbucket OnPrem Connector
● Navigate to you self-hosting bitbucket URL eg http://localhost:7990/ and login with a

service account that has “member” permissions with read only access
○ Make sure this account has access to all repos that will be included in the

analysis
● From your avatar in the top right (may depend on your version), click on Manage

Account menu.
● Click on HTTP/Personal Access Token from the left navigation. Click the Create a token

button.
○ Enter *Name: Uplevel Connector

● Select from the dropdown options Read permissions for both Projects and Repositories.
● Click the Create button.
● Copy the revealed Token. Note, you will not be able to view this token again
● Click on the Continue button.
● Paste the copied Token into the form field in the connector hub

Final Step: Push Data to Uplevel
Once all of the data sources are connected, the final step is to push the data to Uplevel for
analysis. To do this, Click “Settings” on the left navigation bar in the Connector Hub.

From there, toggle the Automate Data Refresh button to “Enabled”, keep the frequency at
“Daily”, and click “Update”.

Once this is done, please contact your Uplevel Representative The Uplevel team will check the
data to make sure there aren’t any issues and will then begin processing. This takes about 1-2
weeks. Once that is done, we’ll reach out and kick off the user launch process.

Appendix: Credential Encryption
The purpose of this section is to provide details into how credentials are stored and encrypted
within the ConnectorHub architecture.

Uplevel uses an AWS-deployed Hashicorp Vault server to store a key for each of our clients.
Please note that we do not store the actual credentials of your third-party services; we only
store a key that allows the ConnectorHub to encrypt and decrypt those credentials within the
client’s side.

As an analogy, we keep the combination to the safe, but the actual safe (and the valuables
inside it) are in your house.

We do this for two reasons:
1. By keeping an encryption key on our end, we ensure that a malicious actor who has

gained access to the ConnectorHub on your end is unable to decrypt and access the
credentials. In the event that such a breach occurs, it will be trivial for us to revoke the
encryption key and remove the ability to decrypt the credentials.

2. By keeping the encrypted data on your end, we ensure that a malicious actor who has
gained access to our Vault deployment cannot gain access to the credentials.

Essentially, this model means that a malicious actor would have to compromise two
completely different systems in order to gain access to the credentials.

When the ConnectorHub gets a credential for a third-party service, it sends a request for the
encryption key to our Vault server. When the key is retrieved, the ConnectorHub immediately
encrypts the credential with it before writing it to disk. This ensures that every credential is
encrypted at rest. Similarly, when it needs to login to begin to access the API’s, the
ConnectorHub sends a request for the key and decrypts the key in order to use it.

In order to get set up with our system, we need to add you to register you and add you to our
Vault. Once we have done so, we will provide a username and password to allow you to access

https://www.vaultproject.io/

it. Every time the ConnectorHub is started up, it will require this username and password in
order to successfully encrypt and decrypt credentials.

